#### 10 Bizarre And Thriving Black Markets Around The World

#### 10 Sex Scandals That Shocked The Ancient World

#### Video: 10 Creepy Unsolved Halloween Mysteries

#### 10 Ways Pirates Made Life Better For African Slaves

#### 10 Unsolved Thanksgiving Mysteries

#### 10 Dark Secrets Of George Soros

#### 10 Fascinating Ancient Egyptian Cultural Practices

#### 10 Shocking Murders By The Original Assassins

#### 10 Mysterious Mosaics

#### 10 Creepy Historical Accounts Of Real-Life Vampires

#### 10 Bizarre And Thriving Black Markets Around The World

#### 10 Sex Scandals That Shocked The Ancient World

#### Video: 10 Creepy Unsolved Halloween Mysteries

#### 10 Ways Pirates Made Life Better For African Slaves

#### 10 Unsolved Thanksgiving Mysteries

#### 10 Dark Secrets Of George Soros

#### 10 Fascinating Ancient Egyptian Cultural Practices

#### 10 Shocking Murders By The Original Assassins

#### 10 Mysterious Mosaics

# 10 Fun Examples of Recreational Number Theory

Mathematicians like to classify and organize numbers in all kinds of ways. Natural numbers are used for counting and ordering; nominal numbers are used for naming (like a driverâs license number); integers are numbers that can be expressed without a fraction or decimal; prime numbers can only divided by 1 and by themselves; and so on. But there is no limit to how we can understand and use numbers; accordingly, there is a branch of pure mathematics, primarily based upon the study of integers, called ânumber theory.â Though we now understand that number theory has boundless applications, uses, and purposes, it can appear to be frivolous to the point of pointlessness – especially the subset known as ârecreational number theory.â Number theorist Leonard Dickson once said, after all, âThank God that number theory is unsullied by any application.â

But that doesnât mean it doesnât provide a measure of nerdy fun for those so inclined. Read on to learn what makes a number âinteresting,â âweird,â âhappy,â ânarcissistic,â âperfect,â and more!

Ah, amicable numbers. They love each other so much. How much? Well, letâs take a classic pairâ284 and 220âand see just how friendly they are. Letâs take all the proper divisors of 220 (that is to say, all its divisors that leave no remainder, including the number 1, and excluding the number itself) and all them up:

1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 = 284

Now, letâs take 284 and do the same thing:

1 + 2 + 4 +71 + 142 = 220.

Voila: a pair of amicable numbers. Other pairs include (1184, 1210), (2620, 2924), and (5020, 5564). This type of number pair was discovered and studied by the Pythagoreans, and has been the subject of much research through the centuries – Fermat, Descartes, Iranian Muhammad Baqir Yazdi, and Iraqi Th?bit ibn Qurra are among the many mathematicians who have delved into the world of amicable numbers. Topics of further study include attempts to discover if there is an infinite amount of pairs, to discern patterns, and to better understand why and how this happens.

Because mathematicians would never be satisfied with mere amicable numbers, âbetrothed numbersâ are pairs where the sum of the proper divisors of each number is equal to the other number +1.

âEmirpâ is the word âprimeâ spelled backwards, and it refers to a prime number that becomes a new prime number when you reverse its digits. Emirps do not include palindromic primes (like 151 or 787), nor 1-digit primes like 7. The first few emirps are 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, and 157 – reverse them and youâve got a new prime number on your hands.

Mostly, saying âemirpâ over and over is kind of a blast. Give it a whirl!

There is an old paradox in the world of mathematics that is known as the âinteresting number paradox.â Simply put, if you keep counting natural numbers, eventually youâll encounter one that isnât interesting; where it gets paradoxical is that by virtue of being the smallest uninteresting number, that number has now become interesting.

Of course, this is all subjective, as it relies on a vague definition of the word âinteresting.â Very generally speaking, a number is considered interesting if it has some type of mathematical quality that sets it apart; 19 is interesting because itâs prime, 999 is interesting because itâs a palindrome (and the UK version of 911); 24 is interesting because (among other reasons) itâs the largest number divisible by all numbers less than its square root. Mathematicians

Achilles was a powerful Trojan War hero who was extremely powerful but had one flawâhis achilles heel. Like him, Achilles numbers are powerful but not perfect.

So, letâs begin with a powerful number. A number is considered powerful if all of its prime factors remain factors once they are squared. 25 is a powerful number because its one prime factor, 5, remains a factor once its been squared (25, which goes into 25 once). Now letâs move onto perfect powers, number that can be expressed as an integer power of another integer; 8 is a perfect power, as itâs 2 cubed.

So now, back to the original premise – Achilles numbers are powerful, but they are not perfect powers. 72 is the first Achilles number, as it is powerful, but it is not a perfect prime. Others include 108, 200, 288, 392, 432, 500, and 648.

What are weird numbers? To understand them, we must first begin with âabundantâ numbers. Abundant numbers, also known as âexcessive,â are bigger than the sum of their proper divisors. 12, for instance, is the first (smallest) abundant numberâthe sum of its proper divisors, 1+2+3+4+6, is 16. 12, therefore, has an âabundanceâ of 4, the amount by which the sum of its divisors exceeds the number. There are many even abundant numbers, but we donât get to an odd one until the number 945.

Some abundant numbers are âsemiperfectâ or âpseudoperfect,â meaning that they are equal to all or just some of their proper divisors. 12 is an imperfect abundant number because some of its divisors can be added together to form 12.

At last, we arrive at weird numbers. A number is weird if it is abundant but NOT semiperfect; in other words, the sum of its divisors is larger than the number itself, but no subset of divisor sums equal the number. Weird numbers are uncommon – the first few are 70, 836, 4,030, and 5,830.

While weird numbers are not equal to the sum of any of their divisors, untouchable numbers take it a step further. For a number to be untouchable, it must not be equal to the sum of the proper divisors of ANY number. A few untouchables are 2, 5, 52, and 88; in fact, 5 is thought to be the only odd untouchable number in existence (though it hasnât been formally proven). There are an infinite number of untouchable numbers, meaning there is no such thing as the largest one.

So having discussed the weird and the untouchable, itâs time to check in with the grandaddy of all proper divisor-related numbers: perfect numbers. A perfect number is one that is exactly equal to the sum of its proper divisors (again, excluding itself). The first perfect number is 6, as its divisors (1, 2, 3) all up to 6. Six is followed by 28, 496, and 8,128. Early Greek mathematicians knew only of these first 4 perfect numbers; Nichomatus discovered 8,128 by the year A.D. 100. Three more were discovered, the first circa 1456 (33,550,336) by an unknown mathematician, and in 1588 (8,589,869,056 and 137,438,691,328) by Italian mathematician Pietro Cataldi in 1588.

All known perfect numbers are even; it is not yet known whether an odd prime exists or is even possible. English mathematician James Joseph Sylvester wrote â…a prolonged meditation on the subject has satisfied me that the existence of any one such [odd perfect number]âits escape, so to say, from the complex web of conditions which hem it in on all sidesâwould be little short of a miracle.â

Some numbers are weird; others are happy. If youâd like to find out if a given number is happy, youâll need to perform the following set of operations. Letâs take the number 44:

First, square each digit, then add them together:

4^2 + 4^2 = 16 + 16 = 32

Then, weâll do it again with our new number:

3^2 + 2^2 = 9 + 4 = 13

And again:

1^2 + 3^2 = 1 + 9 = 10

And finally:

1^2 + 0^2 = 1 + 0 = 1

Voila! Itâs a happy number. Anytime you take a number, perform this âprocedure,â and eventually arrive at the number 1, you have yourself a happy number. If your number never reaches 1, then sadly, itâs unhappy. Interestingly, happy number are extremely common; there are 11 of them between 1 and 50, for example.

As a final note, the greatest happy number with no recurring digits is 986,543,210. That is a happy number indeed.

Narcissistic numbers, also known as Armstrong numbers or âpluperfect digital invariants,â are numbers thatâlisten closelyâare equal to the sum of each of its digits when those digits are raised to the power of the AMOUNT of digits in the number.

Ok. What? Letâs take an example of the four existing narcissistic cubes:

153 = 1^3 + 5^3 + 3^3

370 = 3^3 + 7^3 + 0^3

371 = 3^3 + 7^3 + 1^3

407 = 4^3 + 0^3 + 7^3

In these cases, each digit is cubed because there are three digits in the number. Then, those cubed numbers are added together to produce a sum equal to the original number. There are no 1-digit narcissistic numbers, nor 12 or 13-digit ones; the two 39-digit ones are:

115132219018763992565095597973971522400 and 115132219018763992565095597973971522401.

English mathematician G. H. Hardy recognized the frivolity of such numbers by proclaiming in his book âThe Mathematicianâs Apologyâ that âThese are odd facts, very suitable for puzzle columns and likely to amuse amateurs, but there is nothing in them which appeals to the mathematician.â

A repdigit is a natural number with one repeating digit; the name, in fact, comes from the term ârepeated digit.â The most famous redigit is the so-called âBeast Numberâ 666, a common symbol of the antichrist or of Satan. A repunit, then, is a repdigit that only uses the number 1; repunits pop up frequently in binary code and are related to that most famous of primes, Mersenne Primes. It has been conjectured that there are an infinite number of repunit primes, so if youâd like to try to prove it, please do so at your leisure.